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It is well known that k-contact geometry is a suitable framework to deal with non-
conservative field theories. In this paper, we study some relations between solutions of the
k-contact Euler-Lagrange equations, symmetries, dissipation laws and Newtonoid vector
fields. We review the k-contact Euler-Lagrange equations written in terms of k-vector
fields and sections and provide new results relating the solutions in both approaches.
We also study different kinds of symmetries depending on the structures they preserve:
natural (preserving the Lagrangian function), dynamical (preserving the solutions), and
k-contact (preserving the underlying geometric structures) symmetries. For some of these
symmetries, we provide Noether-like theorems relating symmetries and dissipation laws.
We also analyze the relation between k-contact symmetries and Newtonoid vector fields.
Throughout the paper, we will use the damped vibrating string as our main illustrative
example.
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1. Introduction

Since the 1950s, geometric methods have been used to provide descriptions of
mechanical systems and field theories with many applications in mathematics,
physics, engineering, etc. Some of the most frequent geometric structures involved in
geometric mechanics and field theory are symplectic, k-symplectic or multisymplec-
tic manifolds (see [7}[17)43] and references therein). In general, all these geometric
methods are applied to conservative systems, that is, without any dissipation or
loss of energy, both in the Lagrangian and Hamiltonian sides.

In the last decade, the interest in the geometrization of systems with dissipation
of energy has risen drastically. Contact geometry |1 25 32]} is the suitable geometric
framework to describe many types of damping |2 fl13 21} 35]. This formula-
tion has proved to be very useful in thermodynamics |3 , quantum mechanics
| circuit theory [26], Lie systems Iﬂ and control theory O among others
7_111 [15 |16 27,‘ % Also, there have been several generalizations of contact
geometry in order to describe non-conservative field theory, namely the k-contact
20][22][29], k-cocontact [41] and multicontact [12] formulations. The field equations
obtained by means of these formalisms, called the k-contact Fuler—Lagrange equa-

tions, coincide with the ones obtained from the recently devised generalized Herglotz
principle [ﬁ]

The study of symmetries of dynamical systems is of great interest because it
can provide new ways of finding conservation (or dissipation) laws. In addition,
reduction procedures can be performed in order to simplify the description of a
system whose group of symmetries is known. Since the seminal work by Noether
|3_8]' (see also [33, ‘3_7]), the relation between symmetries and conserved quantities
has been a topic of great relevance in mathematical physics and dynamical systems.
Since the dawn of geometric mechanics, many papers have been devoted to the study
of symmetries and conserved quantities of Hamiltonian and Lagrangian systems
| J 19,36/(39, (46] Recently, this study has been performed for contact and cocontact
systems 14, 21/24], where the notion of conserved quantity has to be replaced with
the notion of dissipated quantity.

The aim of this paper is to deepen in the study of the symmetries of non-
conservative autonomous field theories using the k-contact formalism. There exist
many types of symmetries depending on the structures they preserve. In this work,
we are focused in natural symmetries (symmetries of the Lagrangian function),
dynamical symmetries (those preserving the solutions) and k-contact symmetries
(those preserving the underlying geometric structures). Some of these symmetries
allow us to obtain dissipation laws following the ideas of Noether. Throughout the
work, several examples are used, in particular the vibrating string with damping.

The structure of the paper is as follows. Section @is devoted to reviewing some

basic concepts on k-vector fields, integral sections and second-order partial differ-
ential equations (SOPDEs) which are fundamental tools in this paper. Roughly
speaking, a SOPDE is a k-vector field whose integral sections are first prolongations
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of maps defined on the base manifold. In addition, some geometric structures in the
tangent bundle of k!-velocities of a manifold are introduced using the theory of lifts
of functions and vector fields. These structures are necessary to develop the geo-
metrical k-contact equations. In Sec.|3] we introduce the k-contact Euler—Lagrange
equations, or Herglotz—Euler-Lagrange equations, and several examples of systems
of this form are provided. Section is devoted to describing how to obtain these
equations geometrically via Poincaré—Cartan forms. We present an example of the
geometric k-contact Lagrangian equations. In Sec. [5) we discuss the relation between
solutions of the k-contact Euler-Lagrange equations and the k-contact Lagrangian
k-vector fields, provided by the geometrical k-contact equations.

In Sec. @ the notion of dissipation law is introduced and some examples are
provided. The characterization of these laws in Lemma is a new tool for the
study of dissipation law at the rest of the paper. Section is devoted to present-
ing several types of symmetry, depending on the structure they preserve. Along
this section, several Noether-like theorems relating symmetries and dissipation laws
are provided. Finally, we generalize the notion of Newtonoid vector field, see [ﬂ‘,
from k-symplectic geometry to the k-contact case and we give some results relating
Newtonoid vector fields to k-contact symmetries.

Throughout the paper, all the manifolds are real, second countable and of class
€>°, and the mappings are assumed to be smooth. Einstein’s notation for sums
over crossed repeated indices is hereafter assumed.

2. Preliminaries

The notion of k-vector field is of great interest in the geometric study of partial
differential equations. In this section, we review the main concepts on k-vector fields
and integral sections. In addition, we give some insights on the natural structures
of the bundle of k!-velocities: the Liouville vector field and the canonical k-tangent
structure. These structures allow us to define the notion of SOPDE. For more
information, we refer to [17] and references therein.

2.1. k-Vector fields and integral sections

Let M be a smooth n-dimensional manifold. Consider the Whitney sum of k

copies of its tangent bundle: @*TM = TM @ e @ TM. We have the natural
projections

T @*TM - M, 0% &*TM - TM, a=1,...,k.

A k-vector field on a manifold M is a section X: M — @®FTM of the natu-
ral projection 7F,. We will denote by X*(M) the set of all k-vector fields on
M. Thus, a k-vector field X € X*(M) can be understood as a family of k vec-
tor fields X;,..., X, € X(M), given by X, = 7'1'\“,1"" o X. With this in mind, we
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can denote X = (Xi,...,Xk). A smooth map F : M — N induces the map
®FTF : @*TM — @*TN given by

O T F(Vims - -+ s Vkm) = (T F (i) - - - » Tin F (Vkm)),

where m € M, v1,,,...,Vm € TrnM, and T, F : T(,M — Tpm) N is the tangent
map of F.
Given a map ¢: U C R¥ — M, we define its first prolongation to ®*TM as the

map (1) : U c R¥ — @*TM given by
0 0 0 0
P (t) = Ty <ﬁ o g t) = (thp <@ t) R YY) (ﬁ t)) (1)
where ¢ = (t,...,t) are the canonical coordinates of R¥.

In the same way as one has integral curves of vector fields, the notion of integral
section of a k-vector field is defined as follows. Consider a k-vector field X =
(X1,...,Xx) € X¥(M). An integral section of X is a map 9: U C R¥ — M such
that ™) = X o9, namely Tep) (50 |,) = (Xa09)(t) for every a =1,..., k. We say
that a k-vector field X € X*(M) is integrable if every point of M is in the image of
an integral section of X.

Consider a k-vector field X = (X,) with local expression X, = X g% in a
coordinate system (z') on U C M. Then, v: U C R¥ — M is an integral section of
X if, and only if, it is a solution of the system of partial differential equations

o
ot> |,
A k-vector field X = (X3,...,Xk) on M is integrable if, and only if, [X,, X3| =
0 for every a, B3, which are precisely the necessary and sufficient conditions for the
integrability of the above system of partial differential equations |—3_441] Consider a
diffeomorphism ® : M — M and a k-vector field X = (X1,...,Xk) on M. If ¢

is an integral map of X, then ® o 1) is an integral section of ®.X = (®,.X,). In
particular, if X is integrable then so is ¢, X.

t

= Xo(¥(t))-

2.2. The tangent bundle of k'-velocities

Let 7o : TQ — @ be the tangent bundle of a smooth manifold ). The vector bundle
@®FTQ is called the tangent bundle of k*-velocities of Q (see ﬂI?])

If (¢°) are local coordinates on U C @Q, the natural coordinates (g¢,v*) on TU =
7'51 (U), namely

¢'(vg) = d'(q), v*(vg) = ve(q"),

induce natural coordinates (q*,v%), with ¢ = 1,...,n and a = 1,...,k, on
(75)~(U) which are given by

qi(vlqa sile oy vkq) = qz(q), vfy(vlqa Gally qu) = vaq(qi)'
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Lifts of functions. If f is a differentiable function on Q, the vertical lift f¥ and
the o-lift f(®) of f, are the functions on @*TQ given by

¥ (vg) = (18)" f(vg) = f(a),

£ (vy) = Vo, () = fo(”q)g_qfi , foreverya=1,...,k.
q

Since (¢*)V = ¢* and (¢°)® = v%, we deduce that vector fields on ®*TQ are

characterized by its action on vertical and a-lifts of functions.

Lifts of vector fields. Given a vector field X € X(Q), the vertical o-lifts X "=,
and the complete lift X are the vector fields on @*TQ given by
XV (%) =0, XV () = 65(X()Y,
XC(fV)=(XW)Y, X)) =X\,

withia =1z k.
Taking adapted coordinates (¢*,v?) on ®*TQ, if X = X* ?11" then

]
) .0 - 0Xt 0
Vo _ vi C _ yi J _
Xie =X o’ X¥=X _qu + v, g o’ (2)
and we have
(a)va—a <a>c_a )
q' - ovi)’ dqi ) Ot

As a consequence of and we deduce that the tensor fields of type (1,1)
on ®*TQ are characterized by the action on these lifts of vector fields.

The Liouville vector field A € X(®*TQ) is the vector field defined by A(fY) =0
and A(f(®)) = (@), In adapted coordinates, it reads

A =1t g

Y OvE,

Remark 2.1. (1) If X is a vector field on @ with local one-parameter group ¢; :
Q — Q, then X is the infinitesimal generator of the flow T¢, : ®*TQ —
®*TQ.

(2) A is the infinitesimal generator of the flow ¢ : R x ®*TQ — ®*TQ), given by
(t, (v1,5---,0k,)) = (etvy,,. .., €0, ).

The canonical k-tangent structure is the family (J,...,J*) of tensor fields
of type (1,1) defined by J*(X¢) = XV~ and J*(XV=) = 0. In local adapted
coordinates it is written as

0

JH=
ov

_ ®dqg.

3
«
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2.3. Second-order partial differential equations

Since ®*TQ x R* — @*FTQ is a trivial vector bundle, the canonical structures in
@®FTQ (the canonical k-tangent structure and the Liouville vector field described
above) can be extended to ®*TQ x R* in a natural way, and are denoted with the
same notation (J“ and A).

Definition 2.2. Consider a map ¢,: U C R* — Q x R with ¢,(t) = (¢(t), s%(t)),
where ¢: U C R¥ — Q. The first prolongation of ¢, to ®*TQ x RF is the map
9): U c RF = @*TQ x RF given by

o0 (1) = (6™ (2), 5 (1)),

oD (t) = (thb (% t)""’Tt¢ (% t))

is the first prolongation of ¢ to ®*TQ defined in 1 ,and (t!,...,t*) are the canon-
ical coordinates of RF.

where

In local coordinates, if ¢(t) = (¢*(t)), then we have

t,sa(t)).

Definition 2.3. A k-vector field I' = (I'y,..., %) on @*TQ x R* is a SOPDE if,
and only if, J*(T',) = A.

600) = (60, 5

In local adapted coordinates, a SOPDE I = (I'y,...,I'x) is given by

.0 .0 5,
D=l — ol T* o= o P =,
Yadg TP gl T gsP

a8 =1 k; (4)

where T ; and I'¥ are smooth functions defined on domains of induced charts on
®FTQ x R*.

If : U C R* = @*TQ x R*, locally given by (t) = (¢i(t), ¥, (t),s*(t)), is an
integral section of a SOPDE I = (I'y,...,I'y), from Definition [2.2|and Eq. , it
follows that

o
ate |,

Y dsP

=G0, | =TaO) G| =TAGO)

Then, we have

0sP

Y(t) = (¥ (), va(®), (1) = 60 (1) = (6 (), s%(1), 55| =Tales),

t
where ¢ = pro o 90: U C RF %5 @FTQ x R* 23 Q.
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Thus, we obtain the following characterization for the integral maps of a
SOPDE.

Proposition 2.4. Let T = (I'y,...,[x) be an integrable SOPDE on ©&*TQ x R*,
If ¢ : U C RF = @*TQ x RF is an integral section of T, then

¥() = (60(1),5*(1)) = (1),

and ¢s(t) = (¢*(t),s*(t)) is a solution of the following system of SOPDEs:
: . ' B ; :
—riy (6. 55| 0), 5| =12 (ve. 50

» oty » ot
Conversely, if ¢s: U C RF = Q x R* is a map satisfying the system , then ¢§1)
is an integral section of T' = (I'y,...,Tk).

82 ¢z
ot otP

t,s‘f(t)). )

t t

Definition 2.5. A map ¢,: U C R* — Q x RF satisfying is called a solution
of the SOPDE vector field T.

3. k-Contact Euler—Lagrange Equations

In this section, we introduce the k-contact Euler-Lagrange equations, also called
Herglotz—Euler—Lagrange equations, and several examples of systems of this form
are provided.

The k-contact Euler-Lagrange equations for a Lagrangian function L : ®*TQ x
R* — R read

0 oL OL OL 8L 0s%
— (=0 ) - =0V = [ == (1) _ (1)
ot (c%é N ) g~ (asa avg)"‘bs , g =Lod’,  (6)

for a map ¢s: U C R¥ — Q x R*, ¢,(t) = (4(t), s%(t)), where ¢: U C RF — Q.
Equations @ can also be written as

L ¢ | L 9¢  0°L 9s° oL _ 0L OL  0s°
dui,0v}, Ot°0t8 " Dgidvi, Ot~ sPOvi, Bt Og' — s vy, i

=1L,

(7)
where ¢g1)(t) = (d)] () %L,sa(t)), with t € R*, which represents a system of
SOPDEs on @ x R*. It is important to point out that these equations can be
obtained from two different variational principles |2—3] generalizing the usual Her-
glotz variational principle [31] and the variational principle for the k-symplectic
Euler-Lagrange equations |17, Sec. 6.2]. Throughout the paper, we will call solu-
tions of Eq. @ to the maps ¢, or ¢§1) indistinctly, since we are only considering
solutions which are first prolongations of maps ¢, : U C RF — Q x R*.

2450019-7
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Remark 3.1. In the case k = 1, Eq. @ are Herglotz’s equations (see ﬂ3_1])

d /0L oL OL OL ds 7

It - O - - O — 7~ r O —_— = fe)

i\ ) "o ° "= \Bsow) 0 m Lo
for a Lagrangian function L : TQ x R — R, with solution a curve ~(t) =
(¢'(t),d'(t), s(t)) on TQ x R.

Remark 3.2. Note that when the Lagrangian function L does not depend on the
variables s, for all « = 1,..., k, then the above equations are the Euler—Lagrange
field equations for an autonomous Lagrangian L(q*,v’,) defined on ®*TQ.

Let us see some examples of systems modeled by SOPDEs which can be
described by means of k-contact systems (see [20]).

Example 3.3 (The Damped Vibrating String). It is well known that a vibrat-
ing string can be described using the k-symplectic Lagrangian formalism. Consider
the coordinates (t,z) for the time and the space. Denote by ¢ the separation of
a point in the string from its equilibrium point, and hence v; and v, will denote
the derivative of ¢ with respect to the two independent variables. The Lagrangian
function L.: @2 TR — R for this system is given by

L o 1 5

Lo(g,ve,v2) = Epvt - iT’l)x, (8)

where p is the linear mass density of the string and 7 is the tension of the string.
We assume that these quantities are constant. The Euler-Lagrange equation for
this Lagrangian density is

Py _ 5%
ot? ox?’

2:

T . . . .
where ¢ —, which is the one-dimensional wave equation.

In order to model a vibrating string with linear damping, we modify the
Lagrangian function so that it becomes a k-contact Lagrangian function l.22]|‘
The new Lagrangian function L is defined in the phase bundle ®*TR x R?, endowed
with coordinates (g, v¢, vs, 8%, s%), as

1 1
£(, 0y 00,81, 5%) = Lo — 16 = S0 — Lru2

oy
2 2 T ’ys * (9)

Consider a solution ¢,: R? - R x R? with

d)s(t, 117) - (¢(ta x),st(t,x),s“’(t,x)),
where ¢: R? — R. The first prolongation of ¢ is the map ¢§1) : R? - ®?TR x R?
given by

%

80 (t,2) = (¢(t,x>, 2

(ta) OF

8 (t),8° (&, x)) :
(t,)

2450019-8
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The k-contact Euler—Lagrange equations , for the Lagrangian L, become

¢ 20% 09 Os'  0s® )
W—CW+’Y-6—t—O, W-Fa—x—LO(ﬁs- (10)

The first equation corresponds to a vibrating string with damping.

Example 3.4 (Two Coupled Vibrating Strings with Damping). Consider
a system of two coupled strings with damping. The configuration manifold of the
system is Q = R? equipped with coordinates (¢, g?), where each coordinate repre-
sents the displacement of each string. The Lagrangian phase bundle of this system
is M = ®>TR? x R? endowed with natural coordinates (g', g2, v, v, v¥, v2, s, s%).
Consider the Lagrangian function L: &% TR? x R? — R given by

1
L(ql,q2,vt1,vt2,v;,v£,st,sx) = 5 ((Utl)z o5 (Ut2)2 - ('v:}:)2 = (v3)2) B C(Z) == ’Yst7

where 7 is a friction coefficient and C is a function that represents a coupling of
the two strings that depends only on z = /(q')? + (¢?)2.

1 1 2 2
The maps ¢ = (o', ¢, ‘951 ,%"; : 653 ,%4; ,s', %) solution to the k-contact

Euler-Lagrange equations @ satisfy the system of partial differential equations

32 1 82 1 8 1 ¢1
ag - a:?; +7a¢; FOE =0
62¢2 a2¢2 a¢2 ¢2
o oz TV tO@L =0,
Ost 0s®
E + % —LO¢S.

The first two equations correspond to two damped coupled strings with coupling
function C'. The Hamiltonian formulation of this system was studied in [22].

Example 3.5 (The Telegrapher’s Equation). The current and voltage on a
uniform electrical transmission line is described by the so-called telegrapher’s equa-
tions [30] p. 306; 44/ p. 653]:

oV ol
o0 =~ L EL
ol ov
5 = —Cor — GV,

where V(z,t) is the voltage, I(z,t) is the current, L is the inductance, R is the
resistance, C is the capacitance, and G is the conductance. This system can be
uncoupled, obtaining the system of SOPDEs

o2V % oV

57 = LC55 + (LG + RC) - + RGY,
021 021 oI

55 = LO%5 + (LG + RO) %, + RGL.

2450019-9
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Note that both equations in the system above are identical, and are also known as
telegrapher’s equation. Both of them can be written as

0
Og + 'ya—q +m?q =0, (11)
t
where
__LG+RC 2_R_G D_a2_ 1 02
"=z * ™ "Eg® * e LCor

Equation (11) is the k-contact Euler-Lagrange equation (see ﬂ2_9]) for the
Lagrangian function L : ®*TR x R? — R given by
1 1 1
L(q,vs, vz, 8%, 8%) = 3Vt ~ %vg - szq2 — st
Example 3.6 (Laplace’s Equation with Damping). It is well known that
Laplace’s equation is

% ¢

where ¢ : R™ — R, and it can be understood as the Euler-Lagrange equation for a
Lagrangian L,: ®&" TR — R given by

1
Ls(GimasUy) = —(vf +---+v3l).

2
Consider now the phase bundle ®"TR x R™ with canonical coordinates (g, vy, ...,
Un,s%,...,s™) and the n-contact Lagrangian function L: ®&™ TR x R® — R given
by
L= LO - 7i3i7

where 7; € R are constants. The n-contact Euler-Lagrange equations 1 for this
Lagrangian L become
0%¢ 0%¢ 0o ds? as™

o . ... 90 g 2 g2 12
0x3 * +8m% +%8xi Ox1 * +8xn {12

where ¢§1) : R* —» @™ TR x R™, is the first prolongation of the map ¢, given by
1) _ (¢ 9¢ 9¢ 1 sn).

s — 3_.’1:1""’E’S""
Note that the first equation in (12} is an elliptic partial differential equation
that can be understood as a Laplace’s equation with some additional first-order
terms.

4. Geometric k-Contact Lagrangian Equations

In this section, we review some of the main aspects of the k-contact Lagrangian
formalism for non-conservative field theories, first introduced in [22].

2450019-10
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Definition 4.1. A Lagrangian function is a function L € €= (®*TQ x R¥).

e The Lagrangian energy associated to L is the function defined by E;, = A(L) —
L € €°(*TQ x RF).
e The Poincaré—Cartan forms associated to L are
¢ =dLo J* € Q(&*TQ x RF).
e We define the following one-forms associated to L:
7% =ds® — 02 € QY(0*TQ x RF),
called contact Lagrangian one-forms.

Note that the contact Lagrangian forms introduced above are not contact forms.
However, in favorable cases, they define a k-contact structure on @*TQ x RF,
motivating their name. In natural coordinates, the local expressions of the objects
introduced in Definition |4.1 |are

Eszggﬁ - L, (13)
oL el : 02
o —ds® — ——dgi, dnf=—dg' Adg + ———dg’ A dv?
T T a M T Bgiau T N T udon, 1 P
0°L ;
i A dsP
+3833vgdq Ads”. (14)

Definition 4.2. A Lagrangian function L: ®F TQ x R* — R is said to be regular
if the Hessian of the Lagrangian function L with respect to the fiber coordinates,
namely

jos L
Y OuLovg ’

has maximal rank nk on ®*TQ x RF. Otherwise, the Lagrangian function is
singular.

Remark 4.3. A Lagrangian function L : ®*TQ x R* — R is regular if, and only
if, the family of k differential one-forms n},...,n% defines a k-contact structure on
®*TQ x R¥. In this case, (©*TQ x R¥, n%) becomes a k-contact manifold (see [20]).

Using the forms n¢ we can write Eq. @ as follows:

(. oL
g () (050 )
$ B 5 (15)
2T¢(1)( 9 )nL =—Epo¢s”,
* \ot=
\

2450019-11
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where

0
T.61 | —
t¢s (a'a

9
, 08P

0

; O0g°

0
? 81}15

82 ¢z
ot ots

05"
ote

oSV (¢)

_ 09
) -5

Definition 4.4. The geometric k-contact Lagrangian equations for a k-vector field
X = (X1,...,Xk) on ®*TQ x R* are

oi (t) o8V ()

oL
ix.dn = dEL + 5 2nE,
(16)

’I:Xa ng = —EL.
We will denote by X% (©*TQ x R¥) the set of k-contact Lagrangian k-vector fields,

namely the k-vector fields X = (X1,...,Xx) on @*TQ x R*, which are solutions
to Eq. (16).

For a k-vector field X = (Xi,...,Xx) € Xk (@F*TQ x R*) with local
expression

s 30 . bl
X, =X e X PN ¢y
aaqz + ap avzg + Xq OsP

Equations (16) read

. : 8L
0= (X} - & g
( v )Bsﬁav& "
. ; 2L,
8%8’021
. &L 8L 0°L ,_0°L
_ (X7 . e —— e R e —
0 ( o 'Ua) aqiavé 3(]1 @ 38'88'02! “ 6(1]81)21
- H%L éL OL
i
Xap v, " 95 duy, "
0=L+ (X5 -v) gﬁ - Xa 20

If L is a regular Lagrangian, Eq. (18] lead to X7 = v/, which are the SOPDE
condition for the k-vector field X. Then, (17) holds identically, and t and (|20
give

i L

2 2
) 0L PL 5 0L _OL _ 9L L
0V},

- Xe=L. (21)

O i : - = o
* 0qi OV, ® 9sPovt,  O¢t  9s> O, =

The following lemma is a direct consequence of Egs. (18)—(20}.

2450019-12
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Lemma 4.5. Consider a Lagrangian function L € € (®*TQ x RF).

(1) If L is a regular Lagrangian, then any k-vector field X = (Xi,...,Xk) €
Xk (&*TQ xR¥) is a SOPDE, which is locally given by formula and satisfies
Eq. (21). Moreover, if X is integrable, its integral sections are canonical lifts
i of solutions of the k-contact Euler—Lagrange equations @
(2) If X is SOPDE and X € X% (@*TQ x RF¥) then it is locally given by formula

(4) and satisfies Eq. (21).

Remark 4.6. The results of Lemma |4.5|are the foundations of the k-contact
Lagrangian formalism, and Eq. (16} can be seen as a geometric version of the k-
contact Euler—Lagrange field equations (7).

Remark 4.7. Note that the particular case k = 1 gives the contact Lagrangian
formalism for mechanical systems with dissipation |ﬂ

In the following example, we look for solutions (X1, X2) € X2 (®?TR x R?) of
the geometric k-contact Euler-Lagrange equations (16) for the regular Lagrangian

describing the damped vibrating string, and we give an example of an integrable
SOPDE which is a solution.

Example 4.8. Let us consider again the vibrating string with damping introduced
in Example (3.3] Recall that the Lagrangian function L : ®2>TR x R? — R of this
system given by @ is regular. The Lagrangian energy associated to the Lagrangian
function L is

1 1
EL=A(L)-L= ipvf - 571}3 + s,

and the contact one-forms are
nt =ds* — 0% =ds* — pvndq, 7 =ds® — 0% = ds® + Tv,.dq.

Consider now a two-vector field X = (X1, X») € X2(®?TR x R?) with local expres-
sion

N 0 0 , 0 -
X1—f1a—q+F1ta—w+F1za—%+glﬁ+91@,
. 0 0 0 g 10 = 0
Xz—f2a—q+F2ta—w+Fzza—% +92@ +92%-

The first equation in (16} reads

pfidvy — pFidq — 7 fodvy + TFa,dg = pvidv, — Tvpdv, + ypuidg,
which yields the conditions

—pFy + TFy, = vypv;  (coefficients in du),
fL = v (coefficients in dvy), (22)
fa = vg (coefficients in dv,). (23)
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Notice that Eqgs. (22) and (23) are the SOPDE conditions for the two-vector field
X. On the other hand, the second equation in (16} gives the condition

1
§pvt2 - 57'1)32: — st = L.

Hence, the two-vector field X solution has the local expression

91495 =

0 T 0 0 o 0 ., 0
X1 =Ut8—q T (;FM _'7'Ut) a—t“ +F1:z:a Ve (L—gz) 9st + g1 95’
0 0 0 g5 40 s 0
Xz—vma +F2tat+F2xa—%+gzg+928?,

where the functions Fi,, Fy, Foz, g%, g5, g% remain undetermined.
In order to give an example of an integrable SOPDE solution to (16}, we assume

e the functions Fy, = Fo; = gF = g5 =0,
e the functions g5 only depend on the variable v,,
®

3F§;_ 6F2m 8F22:
0s® =0, Ov; 70, Ost 7 0.

In this case, the integrability conditions, [X,, Xg] = 0 for every a, 3, are

o0F,, 095 T
’:0) = T TUg, _F-’B_ L—g;=0.
90, 90, TV " 2z — YUt + 93

Then, an integrable SOPDE (X, X5) is

0 1 0 /| 0
X1=vt—+(——pv3+78t) —+( pvi — 78)(9—
, 0

(9q 2 8t

E 0 1
it )avz Tz gt

o 2
X =g+ (-5

and by Lemma [4.5) any integral section of (X7, X2) is a canonical lift of a solution
¢s of the k-contact Euler-Lagrange equations (10}.

5. Relations Between Solutions and Lagrangian k-Vector Fields

Now, we characterize, locally and globally, the set of SOPDEs in X% (@*TQ x R¥).

Proposition 5.1. Let L € €°°(®*TQ x R¥) be a Lagrangian function and T €
X*(@*TQ x R¥) a k-vector field. Then,

(1) T € Xk (@*TQ x R¥) if, and only if, it satisfies the conditions

« aL « g «
ZronL = 9ga Ly raflL = By (24)
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(2) Moreover, if T is a SOPDE on ®*TQ x R* with local expression , Eq. (24
can be written locally as

r OL\ 0L 9L oL
v, gt 0s* OvL’

=1 (25)

Proof. (1) It is a direct consequence of Eq. (16} and Cartan calculus.

(2) Using the local expressions of the SOPDE TI', the Lagrangian energy E,
and the one-forms n¢ (, 13} and (14), respectively), a direct computation on
local coordinates shows that

_ o OL .. oL o
OZZFQT’L+EL: <d3 _@dq) (Fa)'*"vaa—_.[/ F — L
and
oL oL
0=%_n - = —dEp +ir,dnf — =—nf
s> 0s®
OL .
_—d(vaa——L>+zpa (dq /\d( z)) Bl < Bvl )
oL oL OL oL . L
=_8vidv azd +azdv +8_d —-T, (3 )dq
DL o, OL O
0s“ 3
8L oL
3 > 3’02 Bsa Ovt, ’
which proves the result. O

We present now a new relation between solutions to the k-contact Euler—
Lagrange equations @ and k-contact Lagrangian k-vector fields on ®*TQ x R*.
This relation plays a fundamental role in this paper.

Proposition 5.2. Let L € €= (®*TQ x R*) be a Lagrangian function.

(1) Amap ¢ : U C RF — QxR*, ¢,(t) = (¢(t), s*(t)) is a solution to the k-contact
Euler-Lagrange equations if, and only if,

0°¢? 0L dsP
(1) (1) _ (1) T8 o L)
gij o 94 ( ° s taatﬁ) * BsPouL, ° (F P )
=0 (26)

95
ot

for any SOPDE T € x’Z(EBkTQ x R¥), with local expression .

I2o¢) = — =Log¢l, (27)
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2) If a k-vector field ' € Xk (@*TQ x R¥) is integrable, and ¢£1) U CRF >
(5
®FTQ x RF is an integral section, then ¢ is a solution to the k-contact Euler—
Lagrange equations .

Proof. (1) Consider a map ¢ : U C RF — Q x R, ¢4(t) = (4(t), s%(t)). If ¢5 is a
solution to the k-contact Euler-Lagrange equations , then we have

027 &AL a¢1 0L dsP
aB | (1) (1) (1) =7
9 ° 95 gear T agaut °% o T asP00 ° % e
oL OL AL
e (1) — _ (1)
oq ° P (830‘ 81}3) & (28)
0s”
— = (1)
5 Logy. (29)

Using Proposition (5.1 a SOPDE T is in Xk (@*TQ x RF) if, and only if, it
satisfies equations

re =, (30)

«

#L ; , L ; &L ., OL_ 9L JL (31)

. e ol g | .
dup0vy, B " 9giovi, ¢ 0sPOvi * Ogt  Os vl

Now, restricting Eqgs. (30) and (31} to the image of qb(l) (¢, 5%) one gets

%L o¢? %L
(1) (1) (1) Q) (178 o A1)
(g'L] o ¢ )( ¢ ) aqjavz ¢ + 6ta a ’38 1 ¢S (FC): o ¢S )
oL OL OL
2L g0 (330‘ o ) 0}, (32)
o) = LoglV, (33)

Using Egs. (32) and (33}, we have that ¢, satisfies (26) and if, and only
if, it satisfies (28) and (29), that are equivalent to k-contact Euler—Lagrange equa-
tions .

(2) Since T' € Xk (@*TQ x RF) it follows that T' satisfies Egs. (17)-(20].
If ¢{" is an integral map of T, we know that I (¢{") = vi (¢"), and if we
restrict Eq. (19) to gl), we obtain that ¢, satisfies the k-contact Euler-Lagrange

equations (7). O

Remark 5.3. Equations (26) and (27] do not require any relationship between
the k-vector field T' € X% (&*TQ x R¥) and the solution ¢, to the k-contact Euler—
Lagrange equations . In other words, one might have a solution ¢, to the k-
contact Euler-Lagrange equations 1 which may not be a solution for any I'" €
xk (@*TQ x RF).
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Remark 5.4. Propositions and play an important role in subsequent sec-
tions of this paper. When the Lagrangian L does not depend on the variables s*, for
a=1,...,k, the function L may be defined on the bundle ®*T(Q, and the previous
results can be formulated in terms of the k-symplectic Lagrangian formalism (see
6] Propositions 2.11 and 2.12]).

6. Dissipation Laws

In this section, we discuss dissipation laws for Lagrangian functions defined on
®F*TQ x R* and we give certain relations between them and integrable SOPDEs on
X% (@*TQ x R¥). From now on, unless otherwise stated, L will denote a (regular or
singular) Lagrangian function on the phase bundle ®*TQ x R* and n¢ will denote
the associated contact Lagrangian one-forms.

Definition 6.1. Amap F = (F!,...,F*): ®*TQxRF — R* is called a dissipation
law if the divergence of

Fool) = (FlogM,...,FFo¢\V): U c RF - R*
satisfies

a 4(1)
DiV(Fo¢g1)) — 6(Fatoa¢s ) T (aaLa Fa) fe) ¢£‘1)’
S

for every solution ¢,: U C R¥ — @Q x R* of the k-contact Euler-Lagrange equa-
tions @
Then, we have

85
#hh 02F

n OF¢
. 0sP

ore
; 81)7'3

B(F* o ¢SV)
ote

_ Om=
t oq'

99’
80 0 9

82¢i
¢gl) (t) 8ta 6t6

t

- (Zr) eatin o

where ¢{" (t) = (¢(t), 2% |, 5*(t))-
In the following example, we present two dissipation laws for the equation of
the damped vibrating string given by the Lagrangian function @

Example 6.2. The two maps F; = (F}, F¥),Fy, = (Fi, Ff¥): ®2 TR x R? — R?,
where

(a) F} = pvy, F¥ = —Tuy,

(b) F =31s'— 3qu, F§ = 1s* + Lqu,,
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give dissipation laws for the k-contact Euler-Lagrange equations . Thus, if ¢,
is a solution to , we deduce that

O(Ffogl)) o(FFogl) ¢ 0%¢ 3¢ _(OL_\
o T ae o e~ o~ \asti1)C%
where ¢{) = (¢, 92,92, ', 5%).

One also verifies that (F}, FiY) satisfies (34) by a straightforward computation.

Remark 6.3. Note that if the Lagrangian L does not depend on the variables
s for a = 1,...,k, we can consider L and the functions F® defined on @®*TQ,
and hence the above Definition [6.1]|becomes the definition of conservation law for
k-symplectic Lagrangian systems (see [4_2])

The following result gives us a first relationship between dissipation laws and
integrable SOPDEs on X% (@*TQ x RF).

Lemma 6.4. Let F = (F*,..., F¥): @*TQxRF — R* be a dissipation law. Then,
every integrable SOPDET = (I'1,...,Tx) € Xk (@*TQ x R¥) satisfies
oL

To(F) = 5 F°. (35)

Proof. Since T is an integrable SOPDE, for every point z € ®*TQ x RF there
exists an integral section ¢§1) : U C RF = @F*TQ x R such that

(1) ¢s is a solution to the k-contact Euler-Lagrange equations, because I' €
X} (@*TQ x R¥),
(2) ¢, satisfies

D)=z, (¢).(2) ((‘%

foreveryte U and a=1,...,k.

) = Ta(6 (),

t

Condition (2) above means that

i 0¢' i 0%¢* 0s®
BOD0) =Gy, Tea800) = oy =

Since F = (F!,...,F*) is a dissipation law, using Eq. (34] at ¢ = 0, and
Eq. (36}, we have

5 (y(t))

(36)

y .
t t

ds* ot |,
_ 9F« o¢ | OF° 82 ¢
aqz ¢g1)(0) ata 0 81)}3 ¢gl)(0) Btaatﬂ 0
oOFe sP
t 558 ot
7 168V (0) 0
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COF| . oFe| 0P|
= |, T By | Tt G Fe®)
=Tx(Z)(F*) O

The converse of Lemma s not true, and the reason is that, as we can see from
Egs. (26) and , we might have solutions ¢ of the k-contact Euler-Lagrange
equations which are not solutions to some I' € X% (&*TQ x R¥). However, we
show in the following lemma that, under some assumption on the functions F'¢,

this converse is true.

Lemma 6.5. Let L € € (®*TQ x R¥) be a Lagrangian and assume that there
exists a vector field X € X(®*TQ x R¥) such that

ixdng =dF%, foreverya=1,...,k, (37)
for some functions F® : ®*TQ x R¥ — R. Then, F = (F®) is a dissipation law for
the k-contact Fuler-Lagrange equations @ if, and only if,

« aL «

for every integrable SOPDE T € Xk (@*TQ x RF).

Proof. The direct implication is given by Lemmal6.4] For the converse implication,
let

XX

& .8 .98
o T Xeger T 5sa

be a vector field on ®*TQ x R* satisfying (37). In view of Eq. (14), we can write
both sides of Eq. (37) as

0%L 0?L ) , B 2L ‘
ixdng = I A W [}’ U ) Sy, < [,
e [(c’iqic’)vgx 0q? 0V, Jig B 0sP o, :

2
+ ¢ Xidn, + OL  yigsh
Jij o 9BV, ’

OF“
avé

oF“
0sP

dF* = o4 dg* +

: ds?
dq' =4

J
dvﬁ -+

and necessarily we have

OF*  o.5.; OF* 8L

— = g% = - X5
81;% ig 0sP  9sPovi, (38)

Consider now ¢s to be any solution to the k-contact Euler-Lagrange equations
(7) (which may not be a solution of any T'). It follows that ¢, satisfies Egs. (26
and (27), since I is assumed to be an integrable SOPDE.
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Contracting Eq. (27) with X% o ¢{"), we obtain

Xt 0 WY (a8 0 s [ T7 o _ O
(X" o ¢ )(gij °¢s’) ap 0 b5’ — Ot otB

. %L _95°

If we replace formulas (38) in Eq. (39}, we have

_ OF¢ 0% 0s
(1) 1) _ D [18 o6 1) _
o] s ( op © 2 3taatﬂ) NETRAG (F e 5ta>

O(F® o gl)
- ( 8ta¢ )+ ( ) ¢(1)

therefore we conclude

8(Fa o d).(sl)) _ Fa(Fa) o ¢g1) = (a_L ) ¢(1)

ote 0s™

and the result follows. O

Remark 6.6. Note that Lemma [6.5]is analogous to [6, Lemma 3.4] for the k-
symplectic Lagrangian formalism. '

7. Symmetries

In this section, we study several different notions of symmetry for k-contact
Lagrangian field theories depending on the structure they preserve: natural symme-
tries (preserving the Lagrangian), dynamical symmetries (preserving the solutions)
and k-contact symmetries (preserving the underlying geometric structures). We
investigate the relations between these symmetries and prove several Noether-like
theorems relating the different types of symmetries to dissipation laws.

7.1. Natural symmetries

We will now try to understand the symmetries of a k-contact Lagrangian system
which are lifts of vector fields on the configuration space. One can see in ﬂﬁ,‘ ﬁ]l
some interesting results related with this kind of symmetries in the case k = 1.

For any vector field Z € X(Q), we denote by Z¢, ZV= € X(&*TQ x RF) its
complete and vertical a-lifts, defined in Sec. [2.2|and extended to ®@*TQ x R in a
natural way. Their local expressions are the same as in .

Definition 7.1. A vector field Z € X(Q) is said to be an infinitesimal natural
symmetry of a Lagrangian function L € ¥°°(@*TQ x R¥) if Z¢(L) = 0.
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Then, we have the following result relating natural symmetries and dissipation
laws.

Theorem 7.2. Let Z € X(Q) be an infinitesimal natural symmetry of a Lagrangian
function L. Then, the functions F* = ZV~(L) gwe a dissipation law.

Proof. Consider the local expressions of ZV~, Z¢ and T in (2] and . From ,
and taking into account that the functions Z* only depend on the variables ¢*, we

get
.0 -0Z' 0 OL .0
Vi _ i Y _— .
I'o(ZV+(L)) = (Z 56+ 37 Bot ) (Bt o (Z ) (L)

& I,

oL
=Z°(L)+ —2Z"(L
(L) + = 2% (L),
for all integrable SOPDE T' € Xk (@FTQ x RF).
Now, since Z(L) = 0 we show that I',(ZV~(L)) = 2% ZV=(L). Finally, in view
of Lemma we just need to check that

izedny =d (ZV>(L)) (40)

to conclude that the functions ZV=(L) give a dissipation law.
If one applies %;c— to the identity Z¢ (L) = Zig—ﬁ 4+ vi 92 9L _ () we obtain
8

@ Qg7 v},

the relation (40) in local coordinates. O

Remark 7.3. When the Lagrangian L does not depend on the variables s¢, for a =
1,...,k, the function L may be defined on the bundle ®@*T(Q, and the above result
is similar to Iﬁ:] Proposition 3.15|, if we consider the function g to be identically
zero. In this case, the functions F'* will give a conservation law, according to the
nature of the system.

The next symmetries we are going to study are those transformations preserving
some structure, and we will distinguish between those that preserve the solutions
of the system (dynamical symmetries) and those that preserve the geometric struc-
tures (k-contact symmetries). These notions were introduced in [241]‘ for the case
k =1, and in [22] for the general case k > 1.

7.2. Dynamaical symmetries
We will begin by introducing the transformations preserving the solutions of the

system.

Definition 7.4. A Lagrangian dynamical symmetry is a diffeomorphism & :
®FTQ x R* - ®*TQ x RF such that, for every solution ¢§1) to the k-contact
Euler-Lagrange equations @, do qbgl) is also a solution.
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An infinitesimal Lagrangian dynamical symmetry is a vector field X €
X(®*TQ x R¥) whose local flow is made of dynamical symmetries.

The following result can be found in [22].

Lemma 7.5. Let X € X(®FTQ x R¥) be an infinitesimal dynamical symmetry.
Then, for every I € %'};(@"’TQ x R¥), we have ix,r Nz = 0.

For the case k = 1 it is known that dynamical symmetries induce dissipated
quantities, and these results are known as dissipation theorems (see ﬂ2‘1])

In the general case £k > 1, in |ﬁ1 Theorem 3], it is proved that if X is an
infinitesimal dynamical symmetry, the functions F'* = —ixn{ satisfy (35), and give
a dissipation law for integral sections of I' € X% (@*TQ x R¥).

The next result states, again with an extra condition, that these functions F'* are
a dissipation law for every solution of the k-contact Euler-Lagrange equations @

Theorem 7.6 (Dissipation Theorem). Let L € €*°(&*TQ x RF) be a
Lagrangian function and consider an infinitesimal dynamical symmetry X €
X(®FTQ x R¥) satisfying the conditions

ixdng = d(—ixng), (41)
or, equivalently, £xn7 = 0. Then, the functions
= —ix’r]g

provide a dissipation law for the k-contact Euler—Lagrange equations.

Proof. Let T' € X% (&*TQ x R¥) be an integrable SOPDE. From Lemma [7.5) we
obtain

: ; ; ; oL , .
Fa(—lxﬂg) = —Zr. ixNL = —ixZLr L — z[13,)(]772 - a?(—zxﬂg)-
Now, from (41) and Lemma |6.5] we deduce that the functions F'* = —ixn¢ give a
dissipation law. O

7.3. k-Contact symmetries

Among the most relevant symmetries are those that leave the geometric structures
invariant. Let us recall the definition of k-contact symmetries for a Lagrangian
function L € € (&*TQ x R¥) (see [%)

Definition 7.7. A diffeomorphism ® : ®*TQ x R* — ®F*TQ x R* is called a
Lagrangian k-contact symmetry if

@*7]% = 7]%, @*EL = EL.
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A vector field X € X(®©*TQ x R¥) is called an infinitesimal Lagrangian k-contact
symmetry if

ang = 0, .,ngL = O, (42)
that is, its local flow is made of Lagrangian k-contact symmetries.

One can obtain the relation between these symmetries that preserve geometric
structures and those that preserve the solutions of the system as follows.

Proposition 7.8. (Infinitesimal) Lagrangian k-contact symmetries are
(infinitesimal) Lagrangian dynamical symmetries.

Proof. Let ¢ = ¢>§l) be a solution of @', and ® a Lagrangian k-contact symmetry

CI)*T]% = n%, CI)*EL = EL. (43)
We need to prove that
. « 8L «@ . «@
i@oy), dNE = | dBL + 52 ) 0 (R0 9),  iwoy),nf = —Ero(®oy), (44)

where (@ 01)l, = (® 0 9).(t)(5%), which is a consequence of and (43).

If X is an infinitesimal k-contact symmetry, its flow ¢, is made of local k-contact
symmetries, namely ¢;n® = n¢ and ¢; E;, = Ey. Thus, ¢, satisfies (44), and then
it transforms solutions to the k-contact Euler-Lagrange equations on solutions to
the k-contact Euler-Lagrange equations. O

From Dissipation Theorem|7.6]and Proposition we deduce that the following
corollary.

Corollary 7.9. If X s an infinitesimal Lagrangian k-contact symmetry, the
functions F'* = —ixn{ give a dissipation law for the k-contact Euler-Lagrange

equations @

Example 7.10. Consider again Example [3.3|(the damped vibrating string). The

0 . o g ;
vector field X = — is an infinitesimal Lagrangian k-contact symmetry, and there-

0q
fore by Corollary [7.9) the map given by
F= (—i%ni,—'é%ni) = (pvt, —TVy)

is a dissipation law.

7.4. Dissipation laws given by vector fields which
are not symmetries

Finally, let us consider any vector field Z € X(®*TQ x R¥) satisfying the conditions

. 0L

Zzng =dg*, ZLzEL=-—g Py

(45)
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for some functions g* € €< (&*TQ x R¥). In the following result, we show how to
associate dissipation laws to these particular vector fields.

Theorem 7.11. Let L : ®*TQ x R*¥ — R be a Lagrangian function and consider
a vector field Z € X(®FTQ x R¥) satisfying conditions (45). Then, the functions

F® = g% —igng

give a dissipation law for the k-contact Fuler—Lagrange equations.

Proof. Consider an integrable SOPDE T' € X% (©TQ x R¥). Then, by Proposi-
tion |5.1] the SOPDE T satisfies Eq. (24), so we compute

Lo(F*) =Ta(9%) — Zr.izng =Ta(9%) —izZr nL — ’i[ra,z]ng

OL
=Ta(g%) - Ds Az — 4r., 2L - (46)

Contracting .Zzn¢ with I', and summing for «, we have

ir,-Zzng, = ir,(dg%) = Ta(g”), (47)
and on the other side
ir, Lzt = Lzirani — izrnt = —LzEL + ., 2%
oL
= 5gad T irazm- (48)

Therefore, from and (48) we deduce that

0L
Fa(g ) a ag + [FQ,Z]’,’L

Finally, substituting the above expression in Eq. (46), we obtain

« e « 8L « > «
Lol —zan)=a?(g —izng),

and by Lemma (6.5 |the functions F'* = g* — izn§ give a dissipation law. O

Remark 7.12. When the functions g* = 0, for every a = 1,...,k, Eq. (45] reduce
to Eq. (42) of infinitesimal Lagrangian k-contact symmetries, and the above theorem
becomes Corollary

To illustrate the above theorem, we will give an example of a vector field satis-
fying the conditions (45).

Example 7.13. Let us consider again the equations modeling a damped vibrating
string given by the Lagrangian function @ The vector field Z = a Tl 8 < +g° a =
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satisfies

oL, oL,
3stg 83“39 ’

&y, =0, ZLzni =dg®, Z£zEL=

where the function ¢! is constant, g = ¢, and g% is an arbitrary function.
By Theorem the corresponding dissipation law is the map given by
F = (k - ZZUE,,QE - Zznf) = (P'Uta —T’Ux),
which coincides with the dissipation law given by the vector field a% in Exam-

ple .10

Remark 7.14. When the Lagrangian L does not depend on the variables s, for
a =1,...,k, the function L is defined on the bundle ®*TQ and, if we think of Z
as vector field on ®*TQ), the conditions (45) are now

Zzdn7 =0, Z£zEL =0,

which is the definition of a Cartan symmetry for the k-symplectic system
(@*TQ,dn¢, EL), see ﬂ42]. Moreover, Theorem (7.11 |becomes Noether’s [42,] Theo-
rem 3.13].

7.5. Newtonoid vector fields

In HE], the set of Newtonoid vector fields was introduced in the framework of the k-
symplectic formulation of autonomous first-order field theories, extending the work
of Marmo and Mukunda in [36]\ for the case kK = 1. In this section, we introduce
this kind of vector fields in the k-contact framework.

In Proposition we prove that, for a regular Lagrangian function L, infinites-
imal k-contact symmetries are Newtonoid vector fields for every corresponding
SOPDE T' € X% (®*TQ x R¥). Finally, we observe that a particular kind of
Newtonoid vector fields that leave the Lagrangian function invariant are also
infinitesimal k-contact symmetries and hence they provide dissipation laws.

Definition 7.15. Consider a fixed SOPDE T'. A vector field X € X(&*TQ x R¥)
is Newtonoid with respect to I' if J¥([I'y, X]) = 0. We denote by Xr the set of
Newtonoid vector fields associated to a SOPDE T'.

Since

.0 .0 o ;0 , 0 o}
s ) i . B 2 z 2
[Ta, X] = |va oq" *las Ovy +1a dsP X oq A vl et ds"

=(ra(Xi)—X")i.+(1’a(Xi)—X( 8 5)) g

* 9q e P oy

0
By — B
+(FQ(X ) X(Fa)) 833’ (49)

2450019-25



X. Rivas, M. Salgado & S. Souto

we deduce that J%([['n,X]) = 0 if, and only if, ['(X*) = X.. Therefore, a
Newtonoid vector field X can be written locally as follows:

; 0 0 0
X" X7 —.
8q a )8'0 + 0s” 0)
From the local expressions and . it follows that the vector fields of the form
0
Z€ + X _—
5 5sa’

where Z¢ € X(®FTQ x R¥) is the complete lift of a vector field Z € ¥(Q) and X
are arbitrary functions on @*TQ x R*, are Newtonoid vector fields for an arbitrary
SOPDE T'.

In the next proposition, we see that the set of Newtonoid vector fields contains
also infinitesimal k-contact symmetries.

Proposition 7.16. Let X € X(®*TQxRF) be an infinitesimal k-contact symmetry

of a system described by a reqular Lagrangian function L : ®*TQ x R¥ — R. Then
X is a Newtonoid vector field for every T' € X% (©*TQ x RF).

Proof. Since I' € X% (®*TQ x R*) and L is regular, from Lemma [4.5|it follows
that I" is a SOPDE. Moreover, I' is a solution to the equations

q « aL « A «
ir,dng =dEp + 32np,  drang = —EL. (51)

Since £xn¢ = 0 and Zx Er = 0, and using the second equation in (51) it follows
that

0=Y2xEL = —Zxir, N = —ir.LxNL — ix,r)NL = — x0T

Now, if we apply -Zx to both sides of the first equation in (51) and use the com-
mutation rules, we obtain

L
gxlr dnL—gxdEL-l—gx(a a)

a «
oL oL _ . oL\ .
=Y (8 ) ng + %fxm =Zx (6?) nL (52)
and
ZLxir,dng = ir,Lxdng — i, xjdng = =i, xdnz.- (53)

Then, from (52) and (53), we have

oL\ .
’L[p X]dnL = —gx (83“) ng- (54)
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We will prove now that Eq. (54) implies that J*([I'4, X]) = 0 and hence X is a
Newtonoid vector field for I'. Using formula (49), we have

o . 0 50
Lo, X] = aaz+Va (% + 2 o 5B (55)
where
Va=Tu(X*)—X., Vig=Ta(X})—X(Tsp), VE=T.(XP)-X(%).

Using formula , it follows that the differential of the contact one-forms 7§ can
be written as follows:

dnt = amdq Adg’ + gmﬂdq A dvﬂ + hj) dq Ads?, (56)
where
w .. i % &L B _ &L & 0*L
0= (22 92 ) g = e
172\ 0gidvi,  Bgiovi, 7 oo 0sP O,

If we replace now formulae (55) and (56) in Eq. (54), we obtain

(mgjw 9PV, — hg VB) dq' + g2PVidv + hVids?

L

OL (4o OL
‘”’gx(a )(d ”mdq)

which implies that gf‘jﬁ V! = 0. Using the fact that the Lagrangian L is regular it

follows that gf‘jﬁ has maximal rank and hence V! = ', (X*) — X’ = 0, which shows
that X is a Newtonoid vector field for the k-vector fields I". O

Corollary 7.17. Let L € €*°(®*TQ x R¥) be a regular Lagrangian function.

(1) Consider a Newtonoid vector field X € X(®FTQ x R¥) of the form

X =27%4 K"‘ai, with Z € %(Q),
SQ
and such that X(L) = 0, and K“ are constants, for « = 1,...,k. Then X is
an infinitesimal k-contact symmetry.
(2) The functions F* = —ixn¢ = ZV>(L) — K“ give a dissipation law.

Proof. By a straightforward computation in local coordinates, it can be proved
that X is an infinitesimal k-contact symmetry, that is, it satisfies Eq. (42].
Then, by Corollary the functions F'* give a dissipation law for the k-contact
symmetry X. O
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8. Conclusions and Further Research

In this paper, we have presented several types of symmetries of non-conservative
Lagrangian field theories using the k-contact framework. In particular, we have
introduced natural symmetries (symmetries of the Lagrangian function), dynamical
symmetries (preserving the solutions of the field equations) and k-contact symme-
tries (preserving the geometric structures). We have studied the relations among
these symmetries and how to obtain dissipation laws from them. This theory has
been illustrated with several physical examples.

The study of the symmetries of k-contact systems in the Lagrangian setting
presented in this paper is another step towards a deeper study of the symmetries
of non-conservative field theories. In future works, this should be complemented
with the analysis of the symmetries and Newtonoid vector fields in the Hamiltonian
counterpart of the k-contact formalism. In particular, it would be interesting to
compare both sets of symmetries in the case of singular Lagrangians, when the
Legendre map is not a diffeomorphism. In addition, it would be very interesting to
study the symmetries and Newtonoid vector fields of these systems and relate them
to the symmetries in the k-contact setting presented in this work.

Recently, a more general geometric framework for non-conservative field the-
ories (generalizing the k-contact [m and k-cocontact [ml formulations) has been
introduced: the so-called multicontact formalism ﬂ1_2] We propose to analyze the
relation between the k-contact and the k-cocontact formulations with the multi-

contact setting, both in the Lagrangian and Hamiltonian formalisms, following the
ideas in [43].
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